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Abstract. We consider quadrupole excitations of quasi-two-dimensional interacting quantum gas in an
anisotropic harmonic oscillator potential at zero temperature. Using the time-dependent variational ap-
proach, we calculate a few low-lying collective excitation frequencies of a two-dimensional anisotropic
Bose gas. Within the energy weighted sum-rule approach, we derive a general dispersion relation of two
quadrupole excitations of a two-dimensional deformed trapped quantum gas. This dispersion relation is
valid for both statistics. We show that the quadrupole excitation frequencies obtained from both methods
are exactly the same. Using this general dispersion relation, we also calculate the quadrupole frequencies
of a two-dimensional unpolarized Fermi gas in an anisotropic trap. For both cases, we obtain analytic
expressions for the quadrupole frequencies and the splitting between them for arbitrary value of trap
deformation. This splitting decreases with increasing interaction strength for both statistics. For a two-
dimensional anisotropic Fermi gas, the two quadrupole frequencies and the splitting between them become
independent of the particle number within the Thomas-Fermi approach.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
05.30.Jp Boson systems

1 Introduction

In a series of experiments, Bose-Einstein condensates
(BEC) have been produced by cooling a vapor of alkali
atoms to a temperature of a few nanokelvin [1]. This sys-
tem opens up interesting perspectives in the field of many
body physics. There has been much progress in the the-
oretical understanding of this system [2]. In particular,
the low-energy collective excitation spectrum of a Bose
condensed dilute gas in a trap has been discussed analyti-
cally by Stringari [3] using a hydrodynamic approximation
and also by sum-rule approach. A few low-lying exci-
tations have also been calculated analytically by using
time-dependent variational approach [4]. The low-energy
excitation spectrum obtained by using time-dependent
Gaussian variational ansatz exactly coincides with the hy-
drodynamic results in the limit of large particle numberN .
Also a similar type of scaling ansatz has been used to de-
scribe the time evolution of the condensate in the large
N limit [5–7]. Experimentally the low-lying collective ex-
citation frequencies of a condensate have been measured
both at zero temperature [8] and at finite temperature [9].
These observed values of the collective oscillation frequen-
cies are in agreement with theoretical results at zero tem-
perature.

a e-mail: tkghosh@imsc.ernet.in

After the discovery of BEC in alkali atomic gas, the
behaviour of trapped Fermi gas is also in focus. It is also
possible to trap the Fermionic atoms at very low tem-
perature, where the quantum effects can be observed.
There has been experimental progress towards cooling
a Fermi gas into the degenerate regime (T < TF) [10].
Several authors have studied the thermodynamic proper-
ties [11,12], collective excitation frequencies in the normal
phase [13–15] as well as in the superfluid phase [16,17] of
a three-dimensional trapped Fermi gas.

The reduction in dimension of a quantum system is
the subject of extensive studies in trapped Bose sys-
tems [18–22] as well as trapped Fermi systems [23]. With
present technology one can freeze the motion of the
trapped particles in one direction to create a quasi two-
dimensional quantum gas by tuning the frequency in the
z-direction. Recently, the lower dimensional BEC has been
realized [24,25].

In a deformed quantum system, angular momentum
is not a good quantum number and the angular momen-
tum states mix with each other. Also in the presence of
a small deformation of trap, the states with angular mo-
mentum quantum number +l and −l split. The partition
function of a deformed two-dimensional harmonic oscilla-
tor is exactly the same as the partition function of a ro-
tating harmonic oscillator, where the rotation frequency
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Ω is related to the trap anisotropy, Ω = (ωy−ωx)/2. Here
ωx and ωy are the oscillator frequencies of the deformed
oscillator. From this analogy we find that the splitting
occurs between the +l and −l angular momentum states
and it is proportional to the trap anisotropy. Similarly
for a quantum gas in a deformed trap, the degenerate
multipole modes with angular momentum quantum num-
ber +l and −l also split. The dipole excitation frequen-
cies of a quantum gas in deformed harmonic trap are the
trap frequencies along x and y-directions, ωx and ωy. The
frequencies and the splitting of the dipole mode neither
depends on the statistics of the trapped gas nor on the
interaction between the particles. In circular symmetric
trap two quadrupole frequencies are degenerate and the
degeneracy is lifted up by elliptic trap deformation. In the
present work we consider quadrupole modes of quantum
gas in a quasi two-dimensional anisotropic trap. We cal-
culate the frequencies of quadrupole like modes for both
bosons and fermions in a deformed harmonic trap analyt-
ically. For both statistics, we study the effect of interac-
tion on the splitting between the quadrupole modes for
arbitrary deformation of the trap. First we consider the
case of a two-dimensional deformed trapped Bose gas at
zero temperature. We analyze the nature of small oscilla-
tions of the confined gas within the time-dependent vari-
ational method. In case of deformed trap the quadrupole
mode couples with the monopole mode whereas the scis-
sors mode remains decoupled. This is due to fact that the
Hamiltonian is invariant under reflection. We calculate
the frequencies of the mixed type of modes using varia-
tional technique. Next we construct the most general type
of excitation operator which couples the quadrupole and
monopole mode. Then we consider only the minimum en-
ergy excitation in sum rule approach. The excitation en-
ergy obtained from the sum-rule approach exactly matches
with that obtained from the time-dependent variational
technique even for an arbitrary number of particles. In
the case of a symmetric trap, these modes can be identi-
fied as a monopole mode and a quadrupole mode. There
is a possibility of experimental verification of our results
since the quasi two-dimensional Bose condensed has been
realized in MIT [24].

This sum-rule method allows us to calculate the
monopole mode and the quadrupole modes of a Fermi
system in a deformed trap where the equation of motion
technique does not hold. These modes can be observed in
nano structures like quantum dots. When the two-body
interaction is long ranged, the sum rule method can be
generalised.

There has been no systematic theoretical study on
the collective excitations of a two-dimensional deformed
trapped quantum gas at zero temperature. The purpose
of this paper is to give an analytic description of the
quadrupole excitation frequencies of a two-dimensional de-
formed trapped quantum gas at zero temperature and to
calculate the splitting of the quadrupole modes for an ar-
bitrary deformation of the trap.

The paper is organised as follows. In Section 2, we
model the quasi-two-dimensional trapped Bose system.

Using the time-dependent variational method we calcu-
late the monopole and quadrupole excitation frequencies
of a two-dimensional deformed trapped interacting Bose
gas. In Section 3, using the sum-rule approach we derive a
general dispersion relation for the quadrupole excitation
frequencies of a two-dimensional trapped quantum system
interacting through the two-body potential. This relation
is valid for both Fermi and Bose statistics. We apply this
general dispersion relation to calculate the same excita-
tion frequencies of a trapped Bose system. We show that
the quadrupole excitation frequencies obtained from both
methods are exactly the same. In Section 4, we consider
trapped unpolarized fermions and apply the dispersion re-
lation obtained from sum-rule approach to calculate the
frequencies of quadrupole modes. In Section 4, we present
the summary and conclusions of our work.

2 Collective low-energy excitation frequencies
of a two-dimensional deformed trapped Bose
gas

In BEC experiments, the trap potential can be approxi-
mated by an effective three-dimensional harmonic oscilla-
tor potential, with tunable trap frequencies ωz in the axial
(z) direction and ωx, ωy in the transverse (x-y) plane. The
alkali-metal vapors used in experiment are very dilute and
the interparticale interaction is well described by the short
range pseudopotential and the interaction strength is de-
termined by s-wave scattering length a. Here we consider
the case when the interparticle interaction is strongly re-
pulsive. The Gross-Pitaevskii (GP) [26] energy functional
of the trapped boson of mass m is given by,

E[ψ] =
∫

d2r dz
[
~2

2m
|∇ψ(r, z)|2

+
m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
|ψ(r, z)|2

+
g

2

∫
d2r′dz′δ2(r− r′)δ(z − z′)|ψ(r′, z′)|2|ψ(r, z)|2

]
,

(1)

where, g = 4πa~2/m, r is the position vector in x-y plane
and ψ(r, z) is the condensate wave function.

It has been shown by Baganato et al. [27] that for
an ideal two-dimensional Bose gas under harmonic trap,
a macroscopic occupation of the ground state can ex-
ist at temperature T < Tc =

√
N/ζ(2)~ω/kB. With

present technology it is possible to freeze the motion of
the trapped particles in one direction to create a quasi-
two-dimensional Bose gas. In the frozen direction the par-
ticles execute zero point motion. To achieve this quasi-two-
dimensional system, the frequency in the frozen direction
should be much larger than the frequency in the x-y plane
and the mean interactions between the particles. Alterna-
tively, the trap frequencies are such that ~ωz � µ ≥ ~ω0

and kBT � ~ωz, where µ is the chemical potential of the
two-dimensional Bose gas.
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For a quasi two-dimensional system we may assume
that the wave function in the z-direction is separable and
is given by,

ψ(z) =
1

(
√
πaz)1/2

e
− z2

2a2
z , (2)

where az =
√
~/mωz is the oscillator length in the z-

direction. Now we integrate out the z-component in the
three-dimensional GP energy functional, then we get the
effective energy functional in two dimensions:

E − ~ωzN
2

=
∫

d2r

[
~2

2m
|∇ψ(r)|2

+
m

2
(ω2
xx

2 + ω2
yy

2)|ψ(r)|2

+
g2

2

∫
d2r′δ2(r− r′)|ψ(r′)|2|ψ(r)|2

]
, (3)

where g2 = 2
√

2π~ωzaza is the effective coupling strength
in two dimensions, a is the s-wave scattering length in
three dimensions and N is the total number of particles
in the condensate. The same effective coupling constant is
obtained in reference [19]. The effective interaction in two
dimensions is given by,

VI = g2δ
2(r− r′). (4)

The chemical potential of quasi two-dimensional Bose con-

densed state is µ = ~ω0

√√
2πNa/az. Recently, the two-

dimensional Bose condensed state has been realized in
MIT [24]. In this experimental set up, they have loaded
N ∼ 104 number of sodium atoms in a trap with trap fre-
quencies ωz/2π = 790 Hz, ω0/2π = √ωxωy ∼ 20 Hz and
a = 2.75 nm. One can easily calculate the chemical poten-
tial µ ∼ 0.19~ω0

√
N which satisfies the above mentioned

inequality condition to be a quasi two-dimensional Bose
system.

In two dimensions, the equation of motion of the con-
densate wave function is described by the Gross-Pitaevskii
equation,

i~
∂ψ(r)
∂t

=
[
− ~2

2m
∇2 + V (r) + g2|ψ(r)|2

]
ψ(r), (5)

where V (r) = m(ω2
xx

2 + ω2
yy

2)/2 is the deformed trap
potential in two dimensions. The normalization condition
for ψ is

∫
d2r|ψ|2 = N . N is the number of particles in the

condensate. One can write down the Lagrangian density
corresponding to this system as follows:

L =
i~
2

(
ψ
∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
+
(
~2

2m
|∇ψ|2 + V (r)|ψ|2 +

g2

2
|ψ|4

)
, (6)

where * denotes complex conjugation. One can get the
non-linear Schrödinger equation (5) by minimizing the ac-
tion related to the above Lagrangian density (6). In order

to obtain the evolution of the condensate we assume the
most general Gaussian wave function,

ψ(X,Y, t) = C(t)e−
1
2 [α(t)X2+β(t)Y 2+γ(t)XY ], (7)

where C(t) is the normalization constant. X and Y are
the dimensionless variables, X = x/a0, Y = y/a0 where
a0 =

√
~/mω0 is the oscillator length and ω0 = √ωxωy is

the mean frequency. Further, α = α1 + iα2, β = β1 + iβ2

and γ = γ1 + iγ2 are the time dependent dimensionless
complex variational parameters. The α1 and β1 are in-
verse square of the condensate widths in x and y-direction
respectively. The square of the normalization constant is
|C(t)|2 = N

√
D/πa2

0, where D = α1β1 − γ2
1 . The Gaus-

sian ansatz (Eq. (7)) for the order parameter can also be
generalized to three-dimensional anisotropic trapped Bose
system to study various scissors modes.

The Gaussian variational ansatz becomes an exact
ground state in the non interacting limit and in the pres-
ence of repulsive interaction it gives rise to spreading of the
condensate wave function. To describe the quadrupoles
and monopole oscillation, we consider the most general
time dependent quadratic exponent of the variational
ansatz.

We obtain the effective Lagrangian L by substitut-
ing equation (7) into equation (6) and integrating the
Lagrangian density over the space co-ordinates,

L

N~ω0
=

1
4D

[
−
(
β1α̇2 + α1β̇2 − 2γ1γ̇2

)
+ (α1 + β1)D +

(
α2

2 + γ2
2

)
β1 +

(
β2

2 + γ2
2

)
α1

− 2 (α2 + β2) γ1γ2 + λβ1 +
α1

λ
+ PD3/2

]
, (8)

where λ is the asymmetric ratio, λ = ωx/ωy and P =√
2/π 2N(a/az).
The variational energy of the static condensate at equi-

librium is given in terms of the equilibrium values of the
inverse square width of the condensate along x and y-
directions,

E

N~ω0
=

1
4

[
(α10 + β10) +

(
λ

α10
+

1
λβ10

)
+ P

√
α10β10

]
.

(9)

One can get the equilibrium value of the variational
parameters, α10 and β10 by minimizing the energy with
respect to the variational parameters,

α2
10 = λ− P

2
α10

√
α10β10, (10)

β2
10 =

1
λ
− P

2
β10

√
β10α10. (11)

From the above two relations, we obtain

η4 +
Pη3

2
− Pη

2λ2
− 1
λ2

= 0, (12)

where η is the ratio of the condensate widths in the x
and y-direction, η =

√
β10/α10. From equation (12) one
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Fig. 1. The variation of the ratio of the widths of the conden-
sate, η as a function of the dimensionless effective interaction
strength P , for the fixed ratio of trap frequencies λ = 0.7.

can say how η changes with the number of atoms N and
the coupling constant g2. The variation of η with the the
dimensionless effective interaction strength P is shown in
Figure 1. The ratio between the widths of the condensate
η varies from 1/

√
λ to 1/λ, as the interaction strength

increases from zero to large value (Thomas-Fermi limit).
In the Thomas-Fermi limit, the equilibrium values of the
parameters α1 and β1 are,

α10 = λ

√
2
P
, β10 =

1
λ

√
2
P
· (13)

In this limit, the energy per particle is E/N = ~ω0

√
P/2.

In the non-interacting limit, α2
10 = λ and β2

10 = 1/λ. The
energy per particle is E/N = ~ω0(

√
λ+

√
1/λ)/2.

We are interested in the low-energy excitations of a
Bose system. The low-energy excitations of the condensate
correspond to the small oscillations of the cloud around
the equilibrium configuration. Therefore we expand the
time dependent variational parameters around the equi-
librium points in the following way, α1 = α10 + δα1,
β1 = β10 + δβ1 and α2 = δα2, β2 = δβ2 γ1 = δγ1, γ10 = 0
and γ2 = δγ2.

Using the Euler-Lagrange equation, the time evolution
of the inverse square of the width around the equilibrium

points are given by,

δα̈1 + λ
(8 + 3Pη)
(2 + Pη)

δα1 +
Pλη

(2 + Pη)
δβ1 = 0, (14)

δβ̈1 +
P

λ(2η + P )
δα1 +

(8η + 3P )
λ(P + 2η)

δβ1 = 0, (15)

δγ̈1 +
[

4λη2

(2 + Pη)
+
(
λ+

1
λ

)]
δγ1 = 0. (16)

From the above equations we can see that the modes cor-
responding to the fluctuations of the average of x2 and
y2 are coupled, but the mode associated with the fluctu-
ation of the average value of xy is decoupled. The equa-
tions (14, 15) are coupled equations of the modes α1 and
β1, where the mode xy is decoupled. This is due to the
fact that the Hamiltonian is invariant under reflection,
x→ −x and y → y or x→ x and y → −y, and the modes
which are odd or even under this operation separate out.

Now we look for time dependent solutions of eiωt type,
we obtain from equations (14, 15),

ω2
±
ω2

0

=
λ

2
(8 + 3Pη)
(2 + Pη)

+
1

2λ
(8η + 3P )
(2η + P )

±

√[
λ(8 + 3Pη)
2(2 + Pη)

− (8η + 3P )
2λ(2η + P )

]2

+
(
Pλη2

2 + Pη

)2

· (17)

For an isotropic trap, ω+ = 2ω0 and ω2
− = [ω2

0(8 +
2P )]/(2 + P ). For large N limit, ω− =

√
2ω0. So ω+

and ω− may be identified as the monopole mode fre-
quency and quadrupole mode frequency respectively. The
monopole mode is coupled with the quadrupole mode in
an anisotropic trap. However, the monopole mode fre-
quency in an isotropic trap is independent of the inter-
action strength of the two-body potential and the number
of particles in the condensate state. This is due to the un-
derlying SO(2, 1) symmetry in the Hamiltonian [20,21].

From equation (16) we obtain,

ω2
s

ω2
0

=
4λη2

(2 + Pη)
+
(
λ+

1
λ

)
· (18)

In an isotropic trap, ωs becomes ω−. In the non-interacting
limit, ωs = ωx + ωy. In the Thomas-Fermi limit, equa-

tion (18) reduces to ωs =
√
ω2
x + ω2

y. In an isotropic trap
this mode corresponds to the quadrupole excitation. This
excitation is also known as scissors mode [28], and this
oscillation has been observed experimentally [29].

3 Sum-rules and collective excitations

In this section, we study the quadrupole excitations of a
two-dimensional deformed trapped quantum gas at zero
temperature within the sum rule approach. In the colli-
sionless regime the collective excitation frequencies of a
confined gas are well described by the sum rule method.
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The collective excitation of any system is usually probed
by applying external fields. Given an excitation opera-
tor F , many useful quantities of the excited system can
be calculated from the so-called strength function [30],

S±(E) =
∑
n

|〈n|F±|0〉|2δ(E −En), (19)

where En and |n〉 are the excitation energy and the excited
state respectively, and F+ = F , F− = F †. Various energy
weighted sum rules are derived from the moments of the
strength distribution function,

m±k =
1
2

∫
Ek(S+(E)± S−(E))dE. (20)

It is easy to see that, for a given k, the moments may be
expressed in terms of the commutators of the excitation
operator F with the many body Hamiltonian H. We give
below some of the useful energy weighted sum rules,

m−0 =
1
2
〈
0|[F †, F ]|0

〉
, (21)

m+
1 =

1
2
〈
0|[F †, [H,F ]]|0

〉
, (22)

m−2 =
1
2
〈
0|[J†, J ]|0

〉
, (23)

m+
3 =

1
2
〈
0|[[F †,H], [H, [H,F ]]]|0

〉
, J = [H,F ], (24)

where [, ] denotes the commutator between correspond-
ing operators. Near the collective excitation frequency the
strength distribution becomes sharply peaked, and the col-
lective excitation energy is described by the moments of
the strength distribution,

~ω =

√
m+

3

m+
1

· (25)

Following reference [31], one can derive the above form of
collective excitation energy by using the variational prin-
ciple. Given the many body ground state it is possible to
find out the collective excitation energy and the excited
state, if one is able to find an operator O†, which satisfies
the following equation of motion:

[Ĥ,O†] = ~ωcO
†. (26)

The excitation energy is then given by the following ex-
pression,

~ωc =

〈
0|[O, [Ĥ,O†]]|0

〉
〈0|O,O†|0〉 · (27)

We may now take the variational ansatz for O† as, O† =
F + bJ with the variational parameter b. By minimizing
the energy with respect to the variational parameter, we

obtain the collective excitation energy as Ec =
√
m+

3 /m
+
1 ,

which is same as equation (25).

Similarly, we construct the most general excitation op-
erator F = x2+by2 when monopole and quadrupole modes
are coupled. b is a variational parameter. In symmetric
trap potential, if b = 1, F is monopole mode and if b = −1,
F is the quadrupole mode. In the same way we can calcu-
late the lowest energy excitation in this particular sector
of excitations variationally. The lowest energy mode turns
out to be the quadrupole mode.

Calculating the moments m1 and m3 by taking the
excitation operator with the Hamiltonian, we obtain,

E2
coll =

4~2

m

Ex
〈x2〉

(1 +Ab2 +Bb)
(1 + Cb2)

, (28)

where A = Ey/Ex, B = Eint/2Ex, C = 〈y2〉/〈x2〉 and
Ex = 〈Tx〉+ 〈Vx〉+ 〈Eint〉/4, Ey = 〈Ty〉+ 〈Vy〉+ 〈Eint〉/4.
Here 〈 〉 denotes the expectation value of the correspond-
ing operators in the ground state and Tx, Vx and Ty, Vy
represents the kinetic energy and potential energy along
x and y coordinates respectively. The interaction energy
is given by Eint = (g2/2)

∫
|ψ|4d2r. Now we minimize this

collective energy with respect to the variational parame-
ter β. The value of β for which the collective energy is
minimum, is given by

b0 =
−2(C −A)±

√
4(C −A)2 + 4B2C

2BC
· (29)

It can be easily shown that for an isotropic trap, b0 =
±1. So we have identified that the monopole mode can
be excited by the operator F = x2 + b0y

2 and quadrupole
mode can be generated by F = x2−b0y2. Inserting b0 into
equation (28), we obtain the following collective oscillation
frequencies:

ω2
± =

2
m

[(
Ey
〈y2〉 +

Ex
〈x2〉

)

±

√(
Ey
〈y2〉 −

Ex
〈x2〉

)2

+
E2

int

4〈x2〉〈y2〉

]
· (30)

Using the variational wave function of the ground state
in deformed trap, one can easily get the excitation fre-
quencies. The lowest energy excitation frequency in this
sector is

ω2
−
ω2

0

=
λ

2
(8 + 3Pη)
(2 + Pη)

+
1

2λ
(8η + 3P )
(2η + P )

−

√[
λ(8 + 3Pη)
2(2 + Pη)

− (8η + 3P )
2λ(2η + P )

]2

+
(
Pλη2

2 + Pη

)2

· (31)

It can be identified as quadrupole mode since in an
isotropic trap, its excitation frequency exactly matches
with the quadrupole mode frequency. The above expres-
sion for the excitation frequency equation (31) is exactly
same as the mode frequency ω− in equation (17).

The higher energy excitation exactly matches within
the monopole mode, although it is not the local minimum
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of the energy, equation (28). The dispersion relation for
this monopole mode frequency is:

ω2
+

ω2
0

=
λ

2
(8 + 3Pη)
(2 + Pη)

+
1

2λ
(8η + 3P )
(2η + P )

+

√[
λ(8 + 3Pη)
2(2 + Pη)

− (8η + 3P )
2λ(2η + P )

]2

+
(
Pλη2

2 + Pη

)2

· (32)

For another quadrupole mode, the excitation operator is
F = xy. Using the commutation relation, we obtain,

m1 =
~2

2m
〈
(x2 + y2)

〉
, (33)

m3 = m3(T ) +m3(v) +m3(ee), (34)

where,

m3(T ) =
~4

m3

〈(
p2
x + p2

y

)〉
, (35)

m3(V ) =
~4

2m
(ω2
x + ω2

y)
〈(
x2 + y2

)〉
, (36)

m3(ee) =
g2~4

2m2

[ ∫
d2rρ(r)

(
y
∂

∂x
+ x

∂

∂y

)2

ρ(r) (37)

+
∫

d2r

(
x
∂ρ

∂y
+ y

∂ρ

∂x

)2 ]
·

Using the variational wave function, we can get all these
moments. In this case m3(ee) exactly vanishes. So the fre-
quency for the quadrupole mode is,

ω2
s

ω2
0

=
4λη2

(2 + Pη)
+
(
λ+

1
λ

)
· (38)

This expression for the quadrupole frequency is also the
same as equation (18). So ω− in equation (31) and ωs

in equation (38) shows the splitting occurs between two
quadrupole modes in a two-dimensional deformed trapped
Bose gas and the dependence of the splitting on the inter-
action strength and trap anisotropy can be analyzed from
the analytical expressions. For an isotropic trap, the two
quadrupole modes are degenerate. The variation of the
splitting between two quadrupole modes ∆b = ωs − ω−,
of a trapped interacting Bose gas, with the dimensionless
interaction parameter P is shown in Figure 2.

We have checked that the sum rule method gives
correct results for the excitation frequencies of the two
quadrupole modes for a system of interacting bosons in
an anisotropic trap. Now we apply this method to calcu-
late the excitation energies of the quadrupole modes of a
system of interacting Fermions in a deformed trap.

4 Two-dimensional trapped anisotropic Fermi
gas at zero temperature

In this section we discuss the collective oscillation of a
two-dimensional deformed trapped unpolarized Fermi gas

20 40 60 80 100

0.1

0.15

0.2

0.25

0.3

Fig. 2. The difference between the two quadrupole modes of
an interacting Bose gas, ∆b/ω0 as a function of the dimen-
sionless effective interaction strength P for fixed ratio of trap
frequencies λ = 0.7.

at zero temperature within the sum-rule approach. Using
this approach, the collective excitations have been studied
in other finite Fermionic systems like atomic nuclei, metal
clusters [32] and quantum dots [33].

We consider a two-dimensional deformed trapped un-
polarized Fermionic atoms at very low temperature. The
two-body interaction of the dilute gas can be described by
the short range pseudopotential V (r− r′) = g2δ

2(r− r′),
where g2 is the coupling constant and its form is given
in Section 2. The Hamiltonian of the trapped Fermionic
atoms is given by,

H =
∑
i

p2
i

2m
+ Vext + g2

∑
i<j

δ2(ri − rj), (39)

where the confining potential is

Vext =
1
2
mω2

0

(
λx2 +

y2

λ

)
· (40)

The Thomas-Fermi energy functional of this trapped in-
teracting Fermi system is given by,

E[ρ(r)] =
∫

d2r

[
~2π

2m
ρ2(r) + Vextρ(r) +

g̃2

2
ρ2(r)

]
,

(41)

where g̃2 = g2/2. Here we assume the density of two spin
components are same, ρ↑ = ρ↓. The interaction energy
density g2ρ↑ρ↓, can be written as (g2/4)ρ2, where ρ is the
total density. By minimizing the energy functional with
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respect to density, we obtain,

ρ(r) =
R2

F

2K0πa4
0

[
1− r2

R2
F

]
, r ≤ RF, (42)

where RF = (4NK0)1/4a0 is the radius of the atomic gas
which is determined from the condition

∫
d2rρ(r) = N .

K0 = 1 + g̃2m/π~2 is a dimensionless constant. At very
low temperatures, collisions are suppressed due to Fermi
statistics and system is in the collisionless regime. We
study the collective excitation frequencies in this regime
by sum rule approach.

In Section 3 we have derived the expressions for
quadrupole excitation frequencies within sum-rule ap-
proach. We can use expression equation (30), to calculate
one of the quadrupole mode frequencies for Fermi gas also.

We evaluate all the expectation values of the cor-
responding operators by using the Thomas-Fermi den-
sity (42),

Ex
〈x2〉 ±

Ey
〈y2〉 =

mω2
0

2
(3K0 + 1)

2K0

(
λ± 1

λ

)
· (43)

Using equations (30, 43), we obtain,

ω2
±
ω2

0

=
(3K0 + 1)

2K0

(
λ+

1
λ

)

±

√[
(3K0 + 1)

2K0

(
λ− 1

λ

)]2

+
(

1− 1
K0

)2

· (44)

For an isotropic trap, the monopole mode frequency be-
comes ω+ = 2ω0.

There is another quadrupole mode for which the ex-
citation operator is F = xy. Using the density for the
trapped interacting Fermi gas at T = 0, we get the follow-
ing moments:

m1 =
~3R6

F

48m2a6
0ω0K0

(
λ+

1
λ

)
, (45)

m3 =
~5ω0R

6
F

12K0m2a6
0

[
1
K0

+
(λ+ 1

λ)2

4

]
· (46)

In this case also, m3(ee) exactly vanishes. The quadrupole
oscillation frequency is given by,

ωs

ω0
=

√[(
λ+

1
λ

)
+

4
K0(λ+ 1

λ )

]
· (47)

For an isotropic trap, ω− in equations (44, 47) becomes

ωs =
√

2ω0

√
(1 +K0)
K0

· (48)

In equations (44, 47), ω− exhibits the splitting of the
quadrupole modes of a two-dimensional deformed trapped
Fermi gas. The scissors mode is also discussed in refer-
ence [16] for superfluid Fermi gas.
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0.3

0.31

0.32
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Fig. 3. The difference between the two quadrupole modes of
an interacting unpolarized Fermi gas ∆f/ω0, as a function of
the dimensionless parameter K0 for fixed ratio of trap frequen-
cies λ = 0.7.

The monopole mode frequency of an isotropic trapped
interacting Fermi system is 2ω0 which is independent of
the interaction strength of the two-body potential and the
number of particles. This is because of the presence of
SO(2, 1) symmetry in the Hamiltonian (Eq. (39)) as dis-
cussed in the previous section.

The splitting between two quadrupole modes, ∆f =
ωs − ω−, of a deformed trapped interacting Fermi gas is
shown in Figure 3. The frequencies of these two modes and
the splitting between them are independent of the parti-
cle number for two-dimensional Fermions within Thomas-
Fermi approximation. This splitting decreases almost lin-
early with increasing interaction strength.

5 Summary and conclusions

In this paper, we have mainly considered two non-
degenerate quadrupole modes of a quantum gas in an
anisotropic harmonic oscillator potential. We investigated
the effect of interaction on the splitting between these
quadrupole modes for arbitrary trap deformation. We
have calculated a few low-lying collective excitation fre-
quencies of a two-dimensional trapped Bose gas in an
anisotropic trap, by using time dependent variational
method. We found that one quadrupole mode is coupled
with the monopole mode in presence of trap deformation.
Another quadrupole mode associated with the fluctuation
of the average value of xy (which is also known as scissors
mode), is decoupled.

Using the energy weighted sum-rule approach we de-
rived the general dispersion relation of the two quadrupole
excitations. Using the same variational wave function
for Bosons, we checked that the collective frequencies
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obtained from the sum-rule approach are exactly the same
as those obtained from the variational method. The main
advantage of the sum-rule method is that it can be ap-
plied to both trapped Bosons and Fermions to calcu-
late the excitation frequencies in the collisionless regime.
This method can be applied for any number of con-
fined particles and also it can be generalised for long
range interactions. This energy weighted sum-rule method
can be extended for Coulomb interaction to study the
quadrupole excitations in a deformed electronic nanos-
tructure like an elliptic quantum dot. The splitting be-
tween the quadrupole modes obtained from this method
is non perturbative in the trap anisotropy parameter.

We considered a system of two-dimensional spin un-
polarised interacting Fermions in an anisotropic harmonic
oscillator potential within Thomas-Fermi approximation.
Applying the sum-rule technique to this deformed Fermi
gas, we obtain two quadrupole excitation frequencies and
the splitting between them analytically. For both statis-
tics, the amount of splitting between the quadrupole
modes decreases with increasing interaction strength. For
a two-dimensional Fermi system the frequencies and the
splitting are independent of the particle number. For an
isotropic trap, the monopole mode frequency of a Bose gas
as well as Fermi gas is the universal frequency 2ω0. This
monopole mode frequency is independent of the strength
of the two-body interaction potential and the number of
particles. This is due to the underlying SO(2, 1) symme-
try in the Hamiltonian. Strictly speaking, our all the re-
sults are valid when the conditions ~ωz � µ ≥ ~ω0 and
kBT � ~ωz are satisfied.

Recent experimental progress in MIT [24] on quasi
two-dimensional Bose condensed shows the possibilities of
verification of our results. Above mentioned quadrupole
modes are excited in the two-dimensional plane and for
simplicity we consider only the two-dimensional trapped
gas. This method and the most general Gaussian ansatz
for the order parameter can also be extended to three-
dimensional anisotropic systems to study the various
quadrupole modes. The splitting in these two quadrupole
modes may be used to find trap anisotropy. It will be an
interesting to study the splitting between the quadrupole
modes of an anisotropic quantum system in presence of
terms having definite chirality, like magnetic field or rota-
tion.

We would like to thank G. Baskaran and M.V.N. Murthy for
helpful discussions. LKB is a unité de recherche de l’École nor-
male supérieure et de l’Université Pierre et Marie Curie, asso-
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